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AML1-ETO is generated from t(8;21)(q22;q22), which is a common
form of chromosomal translocation associated with development
of acute myeloid leukemia (AML). Although full-length AML1-ETO
alone fails to promote leukemia because of its detrimental effects
on cell proliferation, an alternatively spliced isoform, AML1-ETO9a,
without its C-terminal NHR3/NHR4 domains, strongly induces leu-
kemia. However, full-length AML1-ETO is a major form of fusion
product in many t(8;21) AML patients, suggesting additional mo-
lecular mechanisms of t(8;21)-related leukemogenesis. Here, we
report that disruption of the zinc-chelating structure in the NHR4
domain of AML1-ETO by replacing only one critical amino acid
leads to rapid onset of leukemia, demonstrating that the NHR4
domain with the intact structure generates inhibitory effects on
leukemogenesis. Furthermore, we identified SON, a DNA/RNA-
binding domain containing protein, as a novel NHR4-interacting
protein. Knock-down of SON by siRNA resulted in significant
growth arrest, and disruption of the interaction between AML1-
ETO and endogenous SON rescued cells from AML1-ETO-induced
growth arrest, suggesting that SON is an indispensable factor for
cell growth, and AML1-ETO binding to SON may trigger signals
inhibiting leukemogenesis. In t(8;21) AML patient-derived primary
leukemic cells and cell lines, abnormal cytoplasmic localization of
SON was detected, which may keep cells proliferating in the
presence of full-length AML1-ETO. These results uncovered the
crucial role of the NHR4 domain in determination of cellular fate
during AML1-ETO-associated leukemogenesis.

AML1-ETO � Leukemia � NHR4 � SON � t(8;21)

Chromosomal translocation is one of the most common
genetic abnormalities in acute myeloid leukemia (AML) (1).

AML1-ETO is a fusion protein transcription factor generated
from t(8;21)(q22;q22). This translocation is identified in �10%
of all cases and up to 40% of the French-American-British M2
subtype of AML (2–5). However, expression of AML1-ETO by
itself fails to cause leukemia (6–11), which suggests the require-
ment of ‘‘additional hits’’ for AML1-ETO-positive cells to
become leukemogenic.

Previously, our group reported that the C-terminally truncated
form of AML1-ETO (AML1-ETOtr) is strongly leukemogenic
(12). Interestingly, a short form of AML1-ETO, AML1-ETO9a,
which is produced by alternative splicing, was identified in t(8;21)
leukemia patient samples, and expression of AML1-ETO9a in-
duced rapid leukemia development in mice (13). AML1-ETOtr and
AML1-ETO9a encode 556 and 575 aa (a.a.), respectively, and both
lack the NHR3 and NHR4 regions. These results suggest that the
N-terminal portion of ETO (NHR1 and NHR2) fused with AML1,
is sufficient to cause leukemia. In addition, the C-terminal domains
of AML1-ETO (NHR3 and NHR4) may actually play a role in
suppressing disease development.

In this report, we demonstrate that the zinc (Zn)-chelating
structure of the NHR4 is responsible for generating inhibitory
effects on leukemia development, and that this region interacts with
SON, a potential DNA/RNA-binding protein, to cause growth
arrest in AML1-ETO-expressing cells. Furthermore, we demon-
strate a crucial role of SON in cell proliferation, and abnormal
localization of SON in AML1-ETO-expressing leukemia patient
samples.

Results
Deletion or Disruption of the Zn-Chelating Structure of the NHR4
Domain of AML1-ETO Leads to leukemogenesis. The NHR4 domain
of AML1-ETO contains two Zn-chelating motifs including cys-
teines 663, 666, 674, 677, 683, 687, 699, and histidine 695 (Fig. 1B)
(14). To investigate the role of the NHR4 domain in AML1-ETO-
mediated leukemogenesis, we performed transplantation experi-
ments using murine hematopoietic cells infected with the retroviral
vector MigR1 containing full-length AML1-ETO (MigR1-AE), an
NHR4-deleted form of AML1-ETO (MigR1-AE-�NHR4), or
AML1-ETO with a single amino acid mutation at one of the
zinc-chelating residues, cysteine 663 (MigR1-AE-C663S) (Fig. 1A).
The point mutation C663S has been shown to disrupt the Zn-
chelating structure (14, 15). As expected, expression of AML1-
ETO alone (MigR1-AE) did not induce leukemogenesis. However,
MigR1-AE-�NHR4 and MigR1-AE-C663S rapidly induced leuke-
mia (Fig. 1C). Western blot analysis of spleen extracts from the
leukemic mice showed the expression of AE-�NHR4 and AE-
C663S in splenocytes [supporting information (SI) Fig. S1A].
Analysis of hematopoietic cells from mice transplanted with AE-
�NHR4 showed the presence of myeloid blasts in blood, bone
marrow, and spleen (Fig. S1B). Histological examination revealed
extensive infiltrations of leukemic cells in the spleen and the liver
from the AE-�NHR4 leukemic mice (Fig. S1C). Flow-cytometrric
analysis of peripheral blood from leukemic mice with AE-�NHR4
showed that EGFP� cells are negative for lymphoid and myeloid
differentiation markers, such as CD3, B220, CD11b, and Gr-1.
The proportion of c-Kit� cells was greatly increased in the
EGFP� population, indicating the AE-�NHR4 protein causes
an increase in immature myeloid progenitor-like cells (Fig. 1D).
AE-C663S leukemic mice showed the similar phenotypes (data
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not shown), and the disease latency and the survival curve from
the mice with NHR4-deleted or -disrupted AML1-ETO were
very similar to those of AML1-ETOtr or AML1-ETO9a-
tranplanted mice (12, 13).

SON Is an NHR4-Interacting Protein. Because our transplantation
experiments above indicate that NHR4 of AML1-ETO attenuates
the effect of AML1-ETO on leukemogenesis, we hypothesized that
NHR4 may interact with proteins, which abrogate the ability of
AML1-ETO to induce leukemia. To search for NHR4-interacting
proteins, we performed yeast two hybrid screening using three baits,
including full-length wild-type ETO (ETO-wt), ETO with a point
mutation in NHR4 (ETO-C663S), and the C-terminal region of
ETO (NHR3-NHR4) (Fig. 2A). We isolated one clone that inter-
acts with ETO-wt and more strongly with NHR3-NHR4 but not
with ETO-C663S. Sequence analysis revealed that this clone con-
tained a 0.31-kb insert cDNA that encodes the first 102 a.a. of the
mouse SON protein (GenBank accession NM�178880). SON was
reported to have a DNA-binding ability (16–18), and contains
RNA-binding motifs (19, 20) (details in Fig. S2), suggesting that
SON may have a dual ability to interact with both DNA and RNA.
However, no profound studies on the function of SON have been
performed.

GST pull-down experiments showed that SON a.a 1–81 frag-
ment, which is encoded by exons 1 and 2, was sufficient to interact
with the ETO protein (Fig. 2B). Furthermore, in AML1-ETO-
transfected HeLa cells, endogenous SON bound to the full-length
AML1-ETO (Fig. S3). The interaction between endogenous pro-
teins was further confirmed in a t(8;21) leukemia patient-derived
cell line, SKNO-1. Immunoprecipitation with SON antibody pulled
down AML1-ETO in SKNO-1 cell lysates (Fig. 2C), demonstrating
that SON is an AML1-ETO-interacting protein.

We also analyzed the cellular localization of AML1-ETO and

SON by immunofluorescence microscopy. First, we examined the
localization of endogenous SON. SON localized within the nuclei
in a speckled distribution, excluded from the DAPI-stained DNA-
rich region (Fig. S4). These results are consistent with previous
reports showing localization of SON at the nuclear speckles, called
interchromatin granule clusters (21). To determine whether SON
colocalizes with AML1-ETO, HA-tagged AML1-ETO was trans-
fected in HeLa cells and the cells were immunostained with HA
antibody and SON antibody. We detected colocalization of endog-
enous SON and HA-tagged AML1-ETO (Fig. 2D), although not all
AML1-ETO colocalized with SON. In addition, SON was found to
colocalize with the transfected ETO protein (Fig. 2D).

ETO-C663S Mutation Eliminates SON Interaction, but Not N-CoR In-
teraction. Because the NHR4 domain of ETO has been known to
interact with N-CoR/SMRT, we tested whether the cysteine 663
mutant is also defective in N-CoR binding. SON N-terminal
fragment (a.a. 1–81) and the N-CoR fragment containing RIII
domain (a.a. 975-1250) were transfected with wt-ETO or ETO-
C663S. The PPPLIP sequence present in the RIII domain of
N-CoR has been reported to interact with the region encom-
passing NHR3 and NHR4 of ETO (14, 22). However, it had not
been clearly demonstrated whether NHR4 alone interacts with
RIII domain of N-CoR in mammalian cells. Interestingly, ETO-
C663S completely lost its interaction with the SON fragment,
while retaining its ability to interact with the N-CoR RIII
domain (Fig. 3A).

To compare the effect of NHR4 mutation on interactions with
full-length SON and full-length N-CoR, wild-type ETO, ETO-
C663S, and ETO-�NHR4 were expressed in 293T cells, and the
SON antibody or N-CoR antibody was used for immunoprecipita-
tion. Both SON and wild-type ETO was detected in the complex
precipitated with SON antibody (Fig. 3B). However, neither ETO-
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C663 nor ETO-�NHR4 was significantly detected in the immuno-
precipitates (Fig. 3B). In contrast, N-CoR interaction was not
affected by deletion or C663S mutation in the NHR4 region of ETO
(Fig. 3B). It is likely that N-CoR interaction is still mediated by
other domains of ETO whereas SON interaction absolutely re-
quires Zn-chelating topology of ETO.

Knock-Down of SON by siRNA Induces Significant Growth Arrest in the
Cells. It has been demonstrated that full-length AML1-ETO fails to
induce leukemia (6–11), possibly because of AML1-ETO-induced

growth arrest and cell death (23). This observation suggests that the
preleukemic AML1-ETO-positive cells need to overcome these cell
cycle and apoptotic defects to realize their leukemogenic potential.
We found that deletion or mutations of NHR4 promotes leuke-
mogenic ability of AML1-ETO, indicating that disruption of the
interaction between AML1-ETO and proteins that interact with
NHR4 alleviate the hindrance to leukemogenesis. Therefore, we
hypothesize that the interaction of SON with NHR4 of AML1-
ETO may cause growth arrest. To block SON binding to AML1-
ETO, we used siRNA to knock down the SON protein (Figs. 4A and
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4B). Interestingly, when SON siRNA was transfected into cells,
substantial growth arrest was induced in several cell lines, including
K562 (Fig. 4C), HeLa, and BJ primary fibroblasts (data not shown).
Significant morphological changes, such as elongation of K562 cells,
were also observed after introducing SON siRNA (Fig. 4D). As
knock-down of SON alone was able to induce growth arrest, we
could not test the specific effect of disrupting the interaction of
SON with AML1-ETO. However, these results indicate that SON
is essential for normal cell growth, and knock-down of SON results
in impaired cell proliferation that is also observed in cells with
AML1-ETO expression.

Expression of the SON N-Terminal Fragment Rescues AML1-ETO-
Induced Growth Arrest. Knock-down of SON by siRNA alone causes
growth arrest. Therefore, we chose another approach to block the
interaction between AML1-ETO and SON. Since the N-terminal
region of SON corresponding to a.a. 1–81 was sufficient to interact
with NHR4 of AML1-ETO (Fig. 2B), we overexpressed the
N-terminal fragment of SON to interfere with the interaction
between AML1-ETO and endogenous SON. To ensure the proper
nuclear localization, we expressed the first 140 a.a. of SON (SON-
140) that has a putative nuclear localization signal at a.a. 117–128
(based on a GenBank search). Immunostaining revealed that
SON-140 perfectly colocalized with endogenous SON (Fig. 5A).
Expression of this SON-140 fragment efficiently inhibited the
interaction between AML1-ETO and endogenous SON (Fig. 5B).

To test whether expression of the SON N-terminal fragment
could overcome AML1-ET-induced growth arrest, U937 cells with
inducible AML1-ETO expression (23) were infected with MigR1
(control vector) or MigR1-Flag-SON-140. In the presence of tet-

racycline (without AML1-ETO), control cells and Flag-SON-140-
expressing cells showed identical growth (Fig. 5C), confirming that,
unlike SON siRNA, SON-140 itself does not affect cell growth.
Then we cultured these two populations in the absence of tetracy-
cline to induce AML1-ETO expression. As reported previously,
induction of AML1-ETO in the MigR1 control line caused growth
arrest. The Flag-SON-140-expressing line also underwent growth
arrest during the first 2–3 days after tetracycline removal when the
induced AML1-ETO expression exceeded SON-140 expression
(Fig. S5). However, unlike MigR1 control cells, these cells started
to expand after days 4–5, when AML1-ETO induction is at a
moderate level (Fig. S5), and recovered a normal growth rate (Fig.
5C). These results demonstrate that inhibition of the interaction
between AML1-ETO and endogenous SON can rescue cells from
AML1-ETO-induced growth arrest, suggesting that AML1-ETO
and SON interaction generates negative effects on cell growth.

Abnormal Localization of SON in AML1-ETO-Positive Cell Lines and
t(8;21) AML Patient Samples. Because the function of SON appears
to be critical for normal cell proliferation, we further investigated
a possible involvement of abnormal SON expression in leukemia
development. First we checked to see whether the SON expression
level is altered in t(8;21)-positive cell lines. Four leukemic cell lines
were used to compare the SON mRNA level; K562 and U937 cells
as non-t(8;21) cells, and Kasumi-1 and SKNO-1 as t(8;21)-positive
cells. Quantitative real-time polymerase chain reaction analysis
showed that there is no apparent correlation between the presence
of t(8;21) and the level of SON mRNA (data not shown). Then we
analyzed cellular localization of the SON protein in these cell lines
by immunostaining using SON antibody. In addition to the nuclear
SON, cytoplasmic localization of SON was detected in t(8;21)-
positive cell lines, Kasumi-1 and SKNO-1, whereas SON was
perfectly localized within the nucleus in non-t(8;21) leukemic cells
K562 and U937 (Fig. 6A). Quantification of density of SON staining
from image analysis revealed that cytoplasmic SON accounts for
33 � 6% and 29 � 5% of the total SON protein in Kasumi-1 and
SKNO-1 cells, respectively. However, expression of AML1-ETO in
other hematopoietic cells, K562 and U937, did not cause cyto-
plasmic export of SON (data not shown), suggesting that t(8;21)
AML cells, such as Kasumi-1 and SKNO-1, may have acquired
abnormalities in SON localization, so that they overcome the
growth arrest effect generated by the interaction between SON
and AML1-ETO.

Next we analyzed SON localization in primary AML cells from
patients. Leukemic blasts from the blood of non-t(8;21) AML
patients and t(8;21) AML patients were collected and immuno-
stained with SON antibody. Strikingly, t(8;21) AML cells showed
remarkable cytoplasmic localization of SON (Fig. 6B), which is even
more obvious than that observed in t(8;21)-positive cell lines.
Approximately 55 � 7% of the total amount of SON was located
in the cytoplasm, based on image analysis. In contrast, non-t(8;21)
AML cells did not show any SON proteins present in the cytoplasm
(Fig. 6B). These results strongly suggest that abnormal cytoplasmic
localization of SON is involved in t(8;21)-associated AML.

Discussion
Although the abnormal fusion protein AML1-ETO generated by
t(8;21) is necessary to cause leukemia, this fusion protein alone has
failed to cause leukemia (6–11), indicating the secondary mutation
may cooperate with AML1-ETO for leukemogenesis. Here we
demonstrated that the NHR4 domain of AML1-ETO with the
intact Zn-chelating structure generates growth inhibitory effects to
suppress leukemia development. Furthermore, SON is identified as
an NHR4-interacting protein that regulates AML1-ETO-
associated growth arrest. Although SON was shown to be ubiqui-
tously expressed (18) and evolutionarily conserved (24), its func-
tions are largely unknown. In the early 1990s, Chumakov et al.
reported that expression of a SON fragment corresponding to
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growth arrest. U937T cells with inducible AML1-ETO expression were infected
with control vector or Flag-SON-140. The GFP-positive populations were sorted,
cultured with or without tetracycline, and cells were counted every other day.
Western blot shows expression of Flag-tagged SON-140 in sorted cells. Growth
curve shown represents four independent experiments. Each circle and error bar
represents mean � SD, from the triplicate cell culture.
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a.a.1267–2409 of human full-length SON in transformed NIH 3T3
cells inhibited tumorigenesis, suggesting that SON may have anti-
oncogenic potential (25). In contrast, the 1940–2256 a.a. fragment
has been shown to inhibit Bax-mediated apoptosis in yeast (26).
Because, in both experiments, only partial fragments of SON were
expressed, we cannot rule out the possibility that some expressed
proteins may dominantly inhibit the function of the endogenous
full-length SON protein, rather than revealing the authentic func-
tion of SON. However, these data strongly suggest that SON is
involved in cell proliferation and/or apoptosis, which regulate
tumorigenesis. In this study, we demonstrated that knock-down of
endogenous SON by siRNA leads to growth arrest of cells, indi-
cating that SON is an indispensable factor for cell proliferation. We
have observed that SON knockdown causes cell cycle arrest and
subsequent apoptosis in multiple cell types (Ahn and Zhang, data
in preparation for publication). Because full-length AML1-ETO
expression also induces growth arrest/apoptosis, and disruption
of AML1-ETO and SON interaction alleviates this adverse
effect on cell growth, it is likely that the interaction of AML1-
ETO with SON inhibits or alters the normal function of SON.

Although it has been reported that deletion of the NHR4 domain
eliminates the ability of ETO to interact with N-CoR (27, 28), these
interactions were observed in yeast using Gal4-fused ETO frag-

ments. In fact, Lutterbach et al. observed that the ETO fragment
with NHR3/NHR4 deleted still interacted with full-length N-CoR
in Cos-7 cell lysates (27). Recently, Liu et al. also reported that a
C-terminal truncation of AML1-ETO that removed NHR3/NHR4
domains did not affect N-CoR or SMRT binding in transfected
Cos7 cell lysates (29). We also demonstrated here that N-CoR
binding is not disrupted when the NHR4 domain is deleted or
mutated at C663 in mammalian cells. These observations from
several groups indicate that N-CoR interaction is not significantly
disrupted in mammalian cells when NHR4 is deleted. This is
possibly due to other regions of ETO providing N-CoR binding
sites. In contrast, NHR4 deletion or C663S mutation significantly
disrupted ETO-SON interaction. Therefore, it is highly possible
that disruption of AML1-ETO interaction with SON, rather than
AML1-ETO interaction with N-CoR, contributes to progression of
AML1-ETO-associated leukemia, although we still cannot totally
exclude the possibility that the slight reduction in N-CoR recruit-
ment to AML1-ETO, which is not detectable by immunoprecipi-
tation and Western blot, also contributes to leukemogenesis.

Because AML1-ETO with the C663S mutation, which specifi-
cally disrupts the interaction with SON, is leukemogenic, and
expression of the N-terminal fragment of SON (SON-140) that
binds to AML1-ETO keeps cells proliferating in the presence of
AML1-ETO, it is highly predictable that expression of AML1-ETO
together with SON-140 would be leukemogenic in mice. However,
when AML1-ETO expression exceeds the amount of SON-140,
cells still undergo growth arrest (Fig. S5), suggesting that the
relative amount of AML1-ETO and SON-140 would be an impor-
tant factor to consider for the mouse model of coexpression of
AML1-ETO and SON-140. We are currently seeking a method to
coexpress these two proteins at the right level in primary hemato-
poietic cells.

We confirmed that AML1-ETO is indeed localized in the
nucleus in the t(8;21)-positive cell lines (data not shown) and
patient samples (Fig. S6). Therefore, cytoplasmic SON observed in
t(8;21)-positive cell lines and t(8;21) AML patient samples does not
interact with AML1-ETO and may help cells keep proliferating in
the presence of AML1-ETO. As both Kasumi-1 and SKNO-1 cells
have relatively low levels of AML1-ETO9a isoform expression (13),
and as the patient samples that we tested also contained full-length
AML1-ETO as a dominant form (data not shown), dislocation of
SON might be one of the common ‘‘additional mutations’’ for
leukemogenesis of t(8;21)q (22, 22)-positive cells that express
mainly full-length AML1-ETO. Although we observed cytoplasmic
localization of SON in t(8;21)-positive patient samples, exogenous
expression of AML1-ETO, AML1-ETO9a isoform, ETO, or ETO-
C663S in HeLa cells did not cause cytoplasmic localization of SON
(Fig. S7A). In addition, when AML1-ETO and AML1-ETO9a
isoform were coexpressed (Fig. S7B), which was the case in
t(8;21)-positive patients (13), SON was still localized as speckles
within the nucleus (Fig. S7C). These results suggest that AML1-
ETO or its isoform do not directly cause cytoplasmic localization of
SON. It is likely that expression of AML1-ETO and abnormal
localization of SON are independent events that cooperate for
leukemia development.

It is of interest to determine the exact localization of cytoplasmic
SON. We performed experiments to determine whether cytoplas-
mic SON in t(8;21)-positive cells is localized in particular cytoplas-
mic organelles, such as the endoplasmic reticulum (ER), the Golgi,
and lysosomes/endosomes. SON did not colocalize with any of these
organelles (Fig. S8), indicating that cytoplasmic SON is not present
as a component of the ER, the Golgi, or lysosomes/endosomes, and
the SON protein detected in the cytoplasm does not merely
represent a degraded form of SON. Interestingly, costaining of
SON with a Golgi marker, GM130, showed that although seques-
tered SON protein is not exactly colocalized with the Golgi, it is
adjacent to the Golgi. We found that the N-terminal fragment of
SON (1–140 aa) is sufficient to localize at the nuclear speckles (Fig.

Fig. 6. Abnormal cytoplasmic localization of SON in t(8;21)-positive leukemic
cells. (A) Two leukemic cell lines without t(8;21), K562 and U937, and two t(8;21)
leukemic cell lines, Kasumi- 1 and SKNO-1, were stained with SON antibody and
DAPI (for DNA). (B) Blood cells from four different AML patients were stained
with SON antibody and DAPI, and analyzed by fluorescence microscopy. Patient
1, FAB M2 subtype, non-t(8;21); patient 2, FAB M4 subtype, non-t(8;21); patients
3 and 4, FAB M2 subtype, t(8;21) -positive. Arrows indicate cytoplasm-localized
SON. Pictures are of representative features of each cell line and patient samples
from �1000 cells analyzed by fluorescence microscopy.
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5A). Therefore, it is possible that the SON protein detected in
cytoplasm has mutations at the N-terminal region, or is an
isoform that does not contain nuclear localization signals. Be-
cause SON contains potential RNA-binding motifs at its C-
terminal end, it is likely that SON is associated with RNAs in the
cytoplasm. The function of nuclear/cytoplasmic SON is currently
under investigation.

Taken together, our study demonstrates that the molecular
events associated with disruption of normal function of NHR4
could be a secondary mutation that cooperates with AML1-ETO
to promote leukemogenesis. Furthermore, we identified a NHR4-
interacting partner SON, a protein with potential DNA-RNA dual
binding ability, providing the a link between SON and a disease-
causing factor. The interaction between NHR4 of AML1-ETO and
SON may be one of the factors generating inhibitory effects on
leukemia development by blocking cell proliferation. Abnormalities
of SON localization in blood cells from t(8;21) AML patients were
first demonstrated in our study, which reveals a novel drug target
for leukemia. Further studies to elucidate the biological function of
SON may provide valuable insight into the control of cell trans-
formation and cancer development.
Methods
Cell Lines and AML Patient Samples. Kasumi-1, SKNO-1, K562, U937, and U937T-
AML1-ETO tet-inducible cell lines were grown in RPMI MEDIUM 1640, and 293T
and HeLa cells in Dulbecco’s modified Eagle’s medium, supplemented with 10%
(vol/vol) FBS. Blood samples were collected from patients with newly diagnosed
AML at Aarhus University Hospital (Aarhus, Denmark). All sampling was per-
formed as part of the diagnostic process and according to protocols approved by
the ethical committee for the County of Aarhus.

Fetal Liver Cell Isolation, Retroviral Transduction, Transplantation, Hematolog-
ical Analysis, and Flow Cytometry. Fetal liver cells were harvest from E14.5 mouse
embryos (MF-1), infected with retroviruses containing MigR1 empty vector,

MigR1-AE-�NHR4, or MigR1-AE-C663S and transplanted into the recipient MF-1
mice. Procedures were performed as described previously (12, 13).

Transfection, Infection, and Nucleofection. Transfection of 293T and HeLa cell
was performed using Polyfect (Qiagen) as described previously (30). Infection of
K562 and U937T cells was performed as described previously (31). Nucleofection
of K562 cells was performed according to the manufacturer’s protocol (Amaxa).
Negative control siRNA (catalog no. 4621) and SON siRNA (catalog no. 16708,
siRNA ID no. 143161, 143162, 143163) were purchased from Ambion and trans-
fected into cells using Lipofectamine 2000 (Invitrogen) for adherent cells, and
nucleofection for suspension cells.

Yeast Two Hybrid Screening. Yeast two hybrid screening was performed by the
TetR-based Two-hybrid system (Proteinlinks Inc.) to screen a cDNA library of the
murine multipotential hematopoietic precursor cell line, EML (a gift from Dr.
Schickwann Tsai, University of Utah, Salt Lake City, UT).

Production of SON Antibody. Polyclonal antibody was produced in rabbits for
human SON a.a. 2090–2107 (EEKVAKKSGGATIEELTE), and purified by affinity
chromatography (Open Biosystems).

Further Details. Additional information about the experimental methods may be
found in SI Methods.
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